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Abstract

Edge-based elements have proved useful in solving electromag-

netic problems since they are divergenceless. Previous authors have

presented several two-dimensional and three-dimensional elements.

Herein, we present four types of elements which axe suitable for mod-

eking several types of three-dimensional geometries. Distorted brick

and triangular prism elements are given in cartesian coordinates as

well as the specialized cylindrical shell and pie-shaped prism elements

which are suitable for problems best described in polar cylindrical
coordinates.
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where E' is the electric field and G is a Green's function. For the remainder

of this report, we suppress the dependence of F on the unprimed coordinates

since there will be no operations carried out in these coordinates. Further-

more, we express (1) in terms of its cartesian components

where

i = _I_ + 9I_ + _I= (3

z'(u, v,w) =

y'(.,,, _) =

which is accomplished by allowing

x'(u,,_,w) =
$

_-_ N_(u,v,w)x', (6)
i=1

8

_ N,(u,_,_)y; (7)
iml

8

_"_ N,(u, v, w) z_ (8)
i----1

#

with (x',, y_, zi) denoting the ith node coordinates as shown in figure la. The

shape functions are given by

N1(u,v,w) = (1-u)(1-v)(l-w) Ns(u,v,w) = (l-u)(l-v)w

N2(u,v,w) = u(1-v)(1-w) N6(u,v,w) = u(1-v)w

N3'u,v,w) = uv(1-w) Nr(u,v,w) = uvw

N4(u,v,w) = (1-u)v(1-w) Ns(u,v,w) = (1-u)vw

and the Jacobian is of the form

Oz' Oy' _:' Oz' c9e' cgz' Oy' Oz' Oz'IJ(u, v, w)l =
Ou Ov Ow Ou Ow Ov Ou cgv cgw

cgy' Oz' cgz' cgz' Ox' Oy' Oz' cgz' Oy'

+ Ou cgw Ov + Ou Ov ow Ou Ow Ov (10)

(9)

= _" Iv F(z',y',z')dx' dy' dz' (4

and CE {x,V,*}.
To evaluate (4), we apply the change of variables theorem to map the

original brick domain into the unit cube as shown in figure lb.

ivy -, , ,I_ =_. XF(z(u,v,w),y(u,v,w),z(u,v,w))tJ(u,v,w)ldudvdw (5)
dO dO dO



1 Introduction

Edge-based expansion functions have become popular in finite element and

moment method techniques applied to the solution of electromagnetic scat-

tering problems. This is due to the fact that the expansion functions are

divergenceless within the element domain while any fictitious charges formed

at the edges of the element will be canceled by another edge resulting in a

volume which is divergenceless. In contrast, nodal expansion functions are

not divergenceless and are thus less accurate.

Tanner and Peterson [1] presented triangular and tetrahedral divergence-

less vector elements while Jin and Volakis [2] applied the correspolding rect-

angular brick elements to slot scattering problems. Kameari [3] presented

distorted linear and quadratic brick elements in the context of transient

quasi-magnetostatic problems.

In this report we derive edge-based expansion functions for a variety of

three-dimensional elements. These expansion functions are characterized by

unit value along one edge of the element while vanishing along all the re-

maining edges which are parallel to the unit edge. Distorted bricks, distorted

triangular prisms, cylindrical shells and pie-shaped prisms will be presented.

The first two of these are suited for completely general inhomogeneous do-

mains whereas the last two are more appropriate for domains terminated at

cylindrical boundaries.

2 Distorted Brick Element

The first element considered is the distorted brick which is shown in figure In.

The strategy used herein is to first employ the change of variable theorem to

convert the integration domain from the original distorted brick into a cube.

Once this is accomplished, the vector-valued function may be expanded in

terms of edge-based expansion functions as was done by Jin and VolakisI2 ].

Typically, one wishes to integrate some vector-valued function

l(z,y,z) = ; F(x',y',z',x,y,z)dx'dy'dz' (1)

over the domain of the element where V is the volume of the brick and the

vector valued integrand is typically of the form

- ' ' ', ',=E(x,y,z')G(x',y z x,y,z) (2)



where/_ is the electric field and G is a Green's function. For the remainder

of this report, we suppress the dependence of F on the unprimed coordinates

since there will be no operations carried out in these coordinates. Further-

more, we express (1) in terms of its cartesian components

where

and C E {_,y,z}.

(3)

which is accomplished by allowing

x'(u,v, w) =

u'(,,, v, w) =

z'0,, _, _) =

To evaluate (4), we apply the change of variables theorem to map the

original brick domain into the unit cube as shown in figure lb.
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_ u,(u,_,w)x: (6)
i=1

8

y_ N,(u,v,w)y; (7)
i=1

$

y_ N,(u,v,w)z_ (8)
i=1
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with (zi, Yi, zi) denoting the ith node coordinates as shown in figure la. The

shape functions are given by

U_(u,,,,w)
N2(u,v,w)
N3(u,_,w)
N,(u,v,w)

and the Jacobian is of the form

Oz' Oy' Oz' Oz' Oy' Oz' Oy' Oz' Oz'
IJ(u,v,w)l =

Ou Ov Ow Ou #w Ov Ou Ov Ow

+ Oy' Ox' Oz' + Oz' Oz' Oy' Oz' Oz' Oy'
Ou Ow Ov Ou Ov Ow Ou Ow Ov

= (l-u)(l-v)(l-w) Ns(u,v,w)= (l-u)(1-v)w
= u(1-v)(1-w) N6(u,v,w)= u(1-v)w
= uv(1-w) Nr(u,v,w) = uvw
= (1-u)v(1-w) Ns(u,v,w) = (1-u)vw

(9)

(10)

I< = (. fv F(z',y',z')dz' dy' dz' (4)



The partial derivatives are computed from

o4 _ _ &_r,(_, v, w)¢` (ll)
O'--_- ,=i av

with ¢ E { :r, y, z } and v E { u, v, w }. From (9) the partial derivatives of the

shape functions are found to be

cONs(u, v, w) _ _ (1- v) w
0Nl(u,v,w) = -(1-v)(1-w) 0u -

0u

ON6(u,v,w) = (1-u)w

Ou

OX,(_, v, w)
0.%(_, v, w) = v (1 - w) Ou

Ou

C_v

ONd_,,v,_)

ON=(u,v, w)
(9l)

-- vw

OXdu, v, w)
C_I)

= -v (1 - w) Cgu

ONs(u, v, w)
= -(1-u)(t-w) Ov

&%(u, v, w)

ON1 (u, v, w)

--UW

O?¢du, r, w)
OW

= - (I- u) w

O:_%(u,v, w) = -uw
-- -u(1-w) Ov

OX,(_, v, _)
= u (I - w) Ov

---- UW

ONs(u,v,w) = (1-u)w
= (t -,_) (t -,_) ov

ONs(u,v,w) = (1 - _) (1 - _)
_ (1-u)(1-v) Ow

= -u(1 - v) Ow

Og_(_,,_,,w) = __v
Ow

ON,(u, v, w) = - (1 - u) v
Ow

ONd_,, v, w) = u(t - v)

ON,(u,_,_)
"Ow

= UV

ONs(u,v,w) = (I - u) v
Ow



Now that we have transformed the integration domain from the original

distorted brick into the unit cube, we may expand the vector-valued integral

in terms of an edge-based expansion of the form

12

k(x'(u,,, w),y'(u, v,w), z'(_,,, w))= _ _;(_, v, w)v;,
j----1

(12)

where

N_(u,v,w) .= (1-v)(1-w)i12 _,(u, v, w) = u(1-w)iss

_(_,,,,,_) = v(1- _)&3 _q(_,,v,w) = uw&,
_q(_,,,,w) = (_ - ,)_&6 _(u,_,m) = (_ - u)(1 - _)i_

_(_,v,m) = (1-_)(1-w)G _f,(_,_,_) = (1-_)d_s
&rg(_,,,,,w) = (1 - u)_i=_ _Mu, v,w) = _,vi3,

(13)

in which Wj are the unknown expansion coefficients and tij denote the ele-

ment's unit edge vectors given by

tii = Fi -- Fi
Ir_"--r'l (i4)

with F_i being the position vectors in the original domain.

We may now express the cartesian components of (3) as

[VV'I¢=_.__,_,._ .f/_(u,v,w)ig(u,v,w)ldudvdw
j----1 JO JO JO

(15)

recognizing that _bj represents the average component of the vector-valued

function associated with the jth edge.

It should be noted that the brick cannot be too distorted. This is due to

the change of variables theorem. In order to assure a one-to-one mapping for

(x, y, z) to (u, v, w), the sig_: of the Jacobian may not change. This condition

will preclude elements that are twisted or extremely narrow and diamond

shaped. The typical element should therefore not deviate much from the

rectangular brick.



3 Distorted Triangular Prism

A triangular prism element such as the one shown in figure 2a may be de-

veloped in exactly the same manner as the brick. In this case, we employ

a mapping from the original volume V to the volume shown in figure 2b

followed by an edge-based expansion of the vector-valued integrand. The

cartesian component integral may be expressed as

(16)
where the coordinate mapping is given by

6

x'(u,u,w) "- _NJu, v,w)x' i (17)
i=1

6

y(_,,v,w) = _N_(u,v,wly_ (is)
i-----1

6

z'(u,v,w) = __,N,(u,v,w)z_ (19)
i-_ l

#

with the node coordinates (x;, y_, z_) shown in figure 2a and the shape func-

tions are given by

N1(u,v,w) = (l-u-v)(1-w) N4(u,v,w) = (1-u-v)w

N2(u,v,w) - u(1-w) Ns(u,v,w) = uw

N3(u,v,w) = v(1-w) Ns(u,v,w) = vw

(20)
The Jacobian is again given by (10) with

OC _ ONiu
= ,=,-_-( ,,, w)C, (21)

5



and the non-zero shape partial derivatives of Ni are

ON1 ONx ON1 -(1 - u - v) = ON,
au - - (1 - w) = 0----_ O---_ = - O---_-

ON2 ON3 ON2 ON5
Ou -(l-w)= a--_ Ow - u= - o--w-

ON, ON4 ON3 ON6

Ou Ov Ow Ow

(22)

aN5 ON8
_-"W'--_
Ou Ov

The vector valued function in (16) is expanded in terms of edge-based func-
tions

9

_$'(z'(u,v,w),y'(u,v,w),z'(u,v,w)) = y_ 19;(u,v,w)_b¢ (23)
j-_l

where the vector expansion functions are

N_(u,v,w) = [(_1 + _2)i12 + _2t13](1 - w)

N_(u,v, w) = -v_[_at12 - (2i131(1 - w)

_(u,v,w) = -[¢J12 + (¢1+ ¢3)i1_1(1- _)

_(u,,,, w) = -_[_i. + _,_,_]w

N_,(u,v,w) = u(1-v)i,,

.,i;(u,_,,_)= (_-u)(x-,,)i,,
IV;(u,v,w) = (l-u)vt_

(24)

where the area coordinates in (24) axe given for the new integration domain

1

s. = _(.. +b. +_)
nE {1,2,3}

(25)
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and

al = V/(U- 1) 2+v 2 a2 = _/u 2+(v- 1) 2 a3 = vf_+v 2

bl = _/u2+(v-1) 2 b2 = v'_+v 2 b3 = _(u-1):+

Cl -- V/2 C2 -- I C3 --= 1

(26)

We are now able to express (16) as

[ -_ w)lg(u,v,w)ldvdudw/IT-OI¢ = _2O,.,o.,o.,o _ (_''v,
j--.--1

(27)

realizing that the same limited distortion constraint exists for the triangular

prism as was the case for the brick.

b,2

4 Cylindrical Shell Edge-Based Elements

Although the brick and triangular prism elements given previously are quite

general, we find it advantageous to develop an element which is designed

for cylindrical problems. The resulting formulation wilt be quite compact

compared to the brick for example since a specific geometry is assumed. This

element is the polar cylindrical coordinate equivalent of the brick introduced

by Jin and Volakis [2] and is shown in figure 3.

For cylindrical problems, we wish to evaluate the integral

t =f"f' f" p(,'..', d,,
azl a_1 apl

(28)

where the vector-valued function ae(p ', ¢', z') is analogous to (2). We do not

employ any change of variable for this element so we may directly express

the vector-valued function in terms of an edge-based expansion

12

fl'(p', ¢', z')= _ fi/_(p', ¢', z') Oj (29)
j=l

The shape functions are given by

7



,91(p',d,z')

,_;(p',¢',:')

_,_(y, ¢', _')

_'q_(p',<X>',_')

A'_(p',d, _')

_iq(p', <_',z')

_'_(p', ¢', z')

_;(y, ¢', _')

NCo(P',¢,_')

b?;'_(p', ¢', z')

[ o,,]{z,_= _-i<_ ¢,I 77, 7, '_

= L_ p_J _ _ _

= pl-pl i LZl-ZsI

pl p_jg 7, i

= 1 I¢2 ¢,11 ; z,

_'_(p',¢',_')

= [L_-Y 1
LP4 - _'lJ

_
-- Pl

= [P' -- PltT,: T,]

¢1 ¢,1.1
I¢' - ¢11"

._:_,i
I¢'- ¢_[

,l@i- ¢11

1¢2- ¢'1"
1¢2 _,1

(30)

where (pi, ¢_, z_) denote the node coordinates as shown in figure 3 and (28)

is given by

s=E _,f"f'>' " -
s=l J,,.,,_, p, N_(p',¢',z')p'dp'd¢'dz {31)



5 Pie-Shaped Prism

The final element considered is the complement to the cylindrical shell ele-

ment, the pie-shaped element which is shown in figure 4. The development

of this element closely parallels the previous element.

The vector-valued integral is given by

s=f"f°V °`p(_',_',:')_'_',_' _z'
dzl J<b_ JPl

(32)

The vector-valued function is expanded in terms of edge vectors

9

_(p',_',z') _ -" '= N_ (p, ¢', z') g'i (33)
j=l

and the edge-based expansion functions are

_/(p', ¢', z') =

fq (p',_', z') =

f_;(p',_', z') =

_(p', ¢', _') =

_;(p', ¢, _') =

_;(p', ¢', _') =

.h/'_(p', ¢', z') "'----

_(p', ¢, z')

_,;(p', ¢', z')

P2-Pl LZ4-ZlJ

1 1,3 _,,]J_- T,

72=7, LI_,3¢,lJ

l¢3 ¢21J-- Pl

(34)



where (p,, o,, zi) are the nodal coordinates shown in figure 4. With this

expansion. (32) may be written

6 Conclusions

Four different linear volume elements were presented: distorted brick, dis-

torted triangular prism, cylindrical shell, and pie-shaped prism. All of these

elements are used to evaluate a vector-valued integral over the volume of the

element by employing edge-based vector expansion functions. These func-

tions were explicitly given for all elements. In addition, the shape functions

and Jacobian associated with the mapping of the arbitrary brick or triangular

prism to a known prism are presented. Since these elements are divergence-

less, we expect them to useful for simulating various geometries via the finite
element method or the Method of Moments.
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